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P
athogenesis deals with the mode of origin
or development of disease. In this paper,
currently accepted concepts of the origin

and progression of gingivitis and periodontitis are
discussed. Since nearly all of the periodontal dis-
eases are associated with and thought to be
caused by microorganisms, some references to
etiologic agents are of necessity utilized, particu-
larly when certain disease processes are clarified
by example.

Periodontal diseases comprise a variety of
conditions affecting the health of the periodon-
tium. Although the classification scheme defined
at the 1989 World Workshop in Clinical
Periodontics subdivided these diseases into a
number of clinically defined subforms,1 subse-
quent attempts to categorize patients according
to the defined criteria have demonstrated the
considerable problem of overlap in the disease
definitions.2 Furthermore, many of the microbio-
logical and host response features of these dis-
eases are common to several of the subforms of
periodontitis. It has been the consensus of sev-
eral groups, including the 1996 World Workshop
in Periodontics,3 that the current classification
scheme requires revision. Such a revision could
lead to considerably improved diagnostic cate-
gories if the disease definitions were dependent
upon knowledge of the etiology and pathogene-
sis of the various disease subforms as well as

upon more traditional parameters such as signs
of inflammation, probing depths, clinical attach-
ment loss, and age of onset. 

Thus, although considerable progress has
been made in defining both etiologic agents and
pathways of pathogenesis in various forms of
periodontal diseases, insufficient information
exists to definitively recategorize these diseases.
The approach to describing pathogenic mecha-
nisms in this paper will, therefore, be in part
generic and thus refer to “gingivitis” and “peri-
odontitis” rather than to specific disease sub-
forms. Where appropriate, descriptions of evi-
dence for specific or unique pathways associated
with specific forms of disease (as defined at the
1989 World Workshop in Clinical Periodontics)
will be presented.

PATHOGENESIS OF GINGIVITIS

Chronic marginal gingivitis is characterized clini-
cally by gingival redness, edema, bleeding,
changes in contour, loss of tissue adaptation to
the teeth, and increased flow of gingival crevicu-
lar fluid (GCF).4,5 Development of gingivitis
requires the presence of plaque bacteria6,7 which
are thought to induce pathological changes in
the tissues by both direct and indirect means.8

Histopathologic observations have led to the
subdivision of gingivitis into 3 stages.8-10 The ini-
tial lesion appears as an acute inflammatory
response with characteristic infiltration with neu-
trophils. Vascular changes, epithelial cell
changes, and collagen degradation are apparent.
These initial changes are likely due to chemotac-
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tic attraction of neutrophils by bacterial con-
stituents and direct vasodilatory effects of bacter-
ial products, as well as activation of host systems
such as the complement and kinin systems and
arachidonic acid pathways.11,12

The early lesion is characterized by a lym-
phoid cell infiltrate dominated by T lymphocytes,
with extension of collagen loss, while the estab-
lished lesion is dominated by B lymphocytes and
plasma cells. Although direct evidence for spe-
cific mechanisms explaining the appearance and
progression of gingivitis lesions is not available,
the chronic inflammatory infiltrate characteristic
of the early and established lesions, as well as
the proliferation of the junctional epithelium and
destruction of collagen, are consistent with the
activation of mononuclear phagocytes and
fibroblasts by bacterial products with the recruit-
ment and activation of the local immune system
and cytokine pathways. The progression of the
lesion from acute inflammation through T cell
and then B cell predominance is likely orches-
trated by a progression of cytokines (dealt with in
more detail below) which are responsible for
recruitment, differentiation, and growth of the
characteristic cell types with progressive chronic-
ity of the lesion. Importantly, meticulous removal
of plaque will usually result in resolution of the
chronic gingivitis lesion without residual tissue
destruction.

Acute necrotizing ulcerative gingivitis
(ANUG), an acute infection of the gingiva char-
acterized by interdental soft tissue necrosis and
ulceration, pain, and bleeding,13 is characterized
histologically by frank invasion of the gingival
connective tissues by spirochetes and a predom-
inance of Prevotella intermedia and Fusobac-
terium nucleatum in the non-spirochetal flora.13

The association of ANUG with recent episodes of
stress, or with other conditions of impaired host
defense such as malnutrition, immunosuppres-
sion, and systemic diseases, implicates any of a
number of possible environmental and systemic
stressors as pathogenic factors leading to the
expression of the same syndrome.14-20 A com-
mon feature of nearly all cases is very poor oral
hygiene, and nearly all cases can be managed
with local debridement, improved plaque control,
and judicious use of antibiotics.

Pathologic changes in the gingival tissues con-
sistent with clinically chronic or acute gingivitis
have been noted in a number of systemic condi-

tions.21-23 Some of these conditions may mimic
the vascular alterations seen in plaque-induced
gingivitis or result in cellular infiltration by aber-
rant leukocytes or other vascular elements.
These include acute leukemia, hemophilia,
Sturge-Weber syndrome, and Wegener’s granulo-
matosis. In other cases a defective host response
to bacterial infection may be manifested as an
overexpression of gingival inflammation or
caused by an alteration in the usual bacterial
microflora. Such conditions include Addison’s
disease, diabetes mellitus, thrombocytopenia,
combined immunodeficiency diseases, and HIV
infection. A third group of these conditions is
related to hormonal changes manifested as an
exaggerated inflammatory response to plaque as
well as an alteration in the subgingival
microflora. These include changes associated
with pregnancy, puberty, steroid therapy, and use
of birth control medications.24-27 Finally, a large
number of drugs, many of which are associated
with therapy for seizure disorders, hypertension,
or transplant rejection, cause gingival enlarge-
ment in the presence of bacterial plaque.28-33

PATHOGENESIS OF PERIODONTITIS

Periodontitis is clinically differentiated from gin-
givitis by the loss of the connective tissue attach-
ment to the teeth in the presence of concurrent
gingival inflammation.34 Loss of the periodontal
ligament and disruption of its attachment to
cementum, as well as resorption of alveolar bone
occurs. Together with loss of attachment, there is
migration of the epithelial attachment along the
root surface and resorption of bone.9 The
histopathology of the periodontitis lesion is in
many ways similar to that of the established
lesion of gingivitis, with a predominance of
plasma cells, loss of soft connective tissue ele-
ments, and, in addition, bone resorption. 

Despite the histopathologic similarities
between gingivitis and periodontitis, evidence is
lacking that would indicate that periodontitis is
an inevitable consequence of gingivitis.
Furthermore, the pathogenic mechanisms
explaining the progression of gingivitis lesions to
periodontitis lesions are not clear, and the factors
that lead to the initiation of periodontitis lesions
are unknown. Clinical models of disease activity
in periodontitis range from a continuous progres-
sion of disease during which loss of attachment
occurs at a slow rate over long periods of time to
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an episodic burst model in which loss of attach-
ment occurs relatively rapidly during short peri-
ods of disease activity.35-37 Clinical data indicate
that either mechanism could be operant in differ-
ent patients or at different sites or at different
times within the same patient, implying that the
pathogenesis of periodontal attachment loss
could differ between patients and sites and times.
Understanding the pathologic mechanisms
involved still awaits measurement methods that
clearly differentiate between active and quiescent
disease.

Bacterial Virulence 

It is widely accepted that the initiation and pro-
gression of periodontitis are dependent upon the
presence of microorganisms capable of causing
disease. Although more than 300 species of
microorganisms have been isolated from peri-
odontal pockets, it is likely that only a small per-
centage of these are etiologic agents.38 Among
the characteristics that implicate an organism or
group of organisms as etiologic agents are bacte-
rial virulence factors. These are bacterial con-
stituents or metabolites capable of either causing
disruption of homeostatic or protective host
mechanisms or causing the progression or initia-
tion of the disease. If such bacterial virulence
characteristics are truly contributing to disease
pathogenesis, modification of such virulence fac-
tors should result in an improvement in clinical
condition. Thus, the pathogenesis of periodontal
disease lesions is in part dependent upon the vir-
ulence as well as the presence and concentra-
tions of microorganisms capable of producing
disease.

At least 3 characteristics of periodontal micro-
organisms have been identified that can con-
tribute to their ability to act as pathogens: the
capacity to colonize, the ability to evade anti-
bacterial host defense mechanisms, and the abil-
ity to produce substances that can directly initi-
ate tissue destruction. It is now apparent that
within a given pathogenic species, such as
Actinobacilius actinomycetemcomitans or
Porphyromonas gingivalis, only a subset of bac-
terial types or clonal or genetic subtypes may be
pathogenic.39,40 Thus the presence of a patho-
genic bacterial species in the subgingival plaque
may not by itself imply that a pathogen is pre-
sent with virulence characteristics necessary to
initiate or propagate periodontitis lesions. For
example, recent data indicate that strains of A.

actinomycetemcomitans in young patients with
localized juvenile periodontitis differ from those in
older patients with previously active disease in
their ability to produce a leukotoxin that is
thought to be an important virulence characteris-
tic of this species.39

Bacteria need to possess the ability to survive
and propagate in periodontal pockets in the
complex ecosystem of the biofilm. Some exam-
ples of factors that have been identified as pro-
moting virulence of important periodontal
pathogens follow. Virulent organisms can express
appendages such as fimbriae or molecules such
as adhesins which promote association with tis-
sues or other bacteria.41,42 Furthermore, viru-
lence can be enhanced via the presence of a
capsular polysaccharide (as in the case of P. gin-

givalis) which provides resistance to host
defenses such as antibody and complement.
Some organisms are able to invade into or
through host tissues, thereby creating a
sequestered environment for their protection and
gaining more direct access to susceptible host
tissues. Two major periodontal disease patho-
gens, A. actinomycetemcomitans and P. gingi-

valis, are able to invade into the tissues. A. actin-

omycetemcomitans can pass through epithelial
cells into the underlying connective tissues,43

while P. gingivalis can invade and persist in
epithelial cells.44,45 It is likely that tissue inva-
siveness of these organisms may explain the dif-
ficulty in eradicating A. actinomycetemcomitans

by mechanical root debridement, and could also
explain the relatively high concentrations of
serum antibody reactive with these two species
in comparison with other bacteria in dental
plaque.

An important feature of nearly all pathogenic
microorganisms is the ability to evade the host
defense mechanisms that would ordinarily con-
trol such infections and prevent disease.
Foremost among these defense mechanisms in
the periodontium is clearance of bacteria by neu-
trophils with the assistance of antibodies and
complement proteins.46,47 In health, neutrophils
appear to form a barrier at the plaque-tissue
interface, controlling bacterial numbers and pre-
venting ingress of bacteria or their products to
the tissue surface. The immune system typically
assists the neutrophil by producing antibody
molecules that opsonize bacteria; such opsonic
antibodies, alone or in concert with the comple-
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ment system, allow the neutrophil to recognize,
ingest, and degrade bacteria. The local reposi-
tory of such antibody molecules is the gingival
crevicular fluid (GCF), a modified inflammatory
exudate which flows through the junctional and
sulcular epithelium into the gingival crevice or
pocket. Amongst a large variety of other mole-
cules, the GCF contains serum components such
as antibody molecules,48 locally produced anti-
body molecules49 and other substances, such as
neutrophil granule constituents,50,51 that can be
reflective of local immunology and inflammatory
processes. Antibacterial antibodies can provide
many protective functions. Opsonic antibodies
promote phagocytosis via interactions with
phagocyte Fc receptors.52-54 In some cases, anti-
bodies can activate the complement system, an
antibacterial cascade of naturally occurring pro-
teins, which can deposit additional opsonins on
the bacterial surface, release chemical mediators
that recruit additional neutrophils, and deposit
macromolecular complexes into the bacterial sur-
face that will lyse and kill certain bacteria.
Antibodies may also be produced that will specifi-
cally neutralize bacterial toxins and enzymes,48,55

or that will disrupt bacterial colonization by pre-
venting adherence to the tooth or epithelial sur-
face or to other bacteria.56

Little is known about the sequence of events
leading to the initial breakdown of this barrier
and subsequent initiation of periodontitis. A great
deal is known, however, about the mechanisms
evolved by some periodontal bacteria to over-
come this protective mechanism, and some
examples of this are given below. Some organ-
isms, such as strains of A. actinomycetemcomi-

tans 57 or Campylobacter rectus,58 produce
leukotoxins that can kill neutrophils directly, thus
disrupting the primary antibacterial defense
mechanism in the gingival crevice. Secondly,
some bacteria, such as P. gingivalis, produce
proteolytic enzymes that either directly degrade
antibody and complement proteins in the sur-
rounding serum or GCF or prevent the accumu-
lation of these molecules on the bacterial
surface.55,59 This activity would prevent accumu-
lation of complement-derived chemotactic fac-
tors which would ordinarily recruit many addi-
tional neutrophils to the site of infection, as well
as retard the phagocytosis of both the proteolytic
bacteria themselves and other bacteria that are in
close proximity. Third, some bacteria such as A.

actinomycetemcomitans produce factors that
suppress the immune response to itself and other
bacteria,60, 61 thereby diminishing the production
of otherwise protective antibodies. Finally, as
mentioned above, some bacteria can invade tis-
sue cells and avoid contact with neutrophils and
molecules of the immune system. Thus, patho-
genic bacteria appear to have devised a number
of means by which they can evade control by
neutrophils, either by directly decreasing their
numbers or by destroying host mechanisms
meant to promote opsonization, phagocytosis,
and bacterial killing.

The interaction between neutrophils, antibody,

and complement provides primary protection

against the deleterious effects of periodontal

pathogens. In general, high levels of antibody do

not appear in a patient’s serum or GCF until

some time after the disease process has initiated.

High levels of antibodies reactive with bacterial

virulence factors such as A. actinomycetemcomi-

tans leukotoxin or P. gingivalis proteases, or with

whole bacterial antigen preparations, do not

occur until relatively late in the disease process

and probably do not play an important role in

prevention of disease initiation.48,62 However, it

appears that in the case of the antibody response

to A. actinomycetemcomitans and P. gingivalis in

early-onset periodontitis patients the extent and

severity of disease is the least in patients with the

highest titers; thus, some antibody responses to

periodontal disease pathogens may ultimately

prevent or delay progression of existing dis-

ease.63,64

Destruction of Periodontal Tissues 

The protective responses to periodontal
pathogens may be overcome in a number of
ways as outlined above, and the concentration of
pathogens in subgingival plaque may reach a
critical level required for initiation or progression
of tissue destruction. Although at least two path-
ogenic bacteria have been shown to invade the
superficial layers of the periodontal tissues, it is
readily apparent from histologic observation that
pathologic effects on connective tissue and alve-
olar bone occur at sites deep to the subgingival
plaque and invading microorganisms. For this
reason, in addition to the possible direct patho-
logic effects of bacteria on the periodontal tis-
sues, it is clear that damage to the periodontium
must also occur by indirect means. Bacterial
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products must gain access to the cellular con-
stituents of the gingival tissues and activate 
cellular processes that are destructive to 
collagenous connective tissue and bone.

Direct effects of bacteria. It is likely that direct
pathological effects of bacteria and their products
on the periodontium are significant during early
stages of disease. Analysis of plaque samples
from patients with increasingly severe levels of
gingival inflammation reveals a succession of
bacterial species with increased capacity to
directly induce an inflammatory response. For
example, increased and persistent levels of
Fusobacterium nucleatum in sites of mild gingivi-
tis and the consequent production of its metabolic
by-products may directly affect the gingival vas-
culature. The resulting edema and increase in
production of GCF may provide the environment
and nutrients that allow putative pathogens to
flourish.38 Although it is unknown whether or not
gingivitis is a prerequisite to development of a
periodontitis lesion, it is reasonable that the alter-
ation of the gingival environment by toxic or pro-
inflammatory by-products of the gingivitis flora can
set the stage for increased concentrations of more
virulent microorganisms within the plaque mass.

It is also likely that bacteria can contribute to
the pathogenesis of periodontal diseases directly
by many other means. P. gingivalis, for example,
is known to produce enzymes (proteases, colla-
genase, fibrinolysin, phospholipase A) that could
directly degrade surrounding tissues in the super-
ficial layers of the periodontium. In addition it
produces metabolic by-products such as H2S,
NH3, and fatty acids that are toxic to surrounding
cells.45,65-67 Furthermore, bacterial constituents
such as lipopolysaccharide (LPS) are capable of
inducing bone resorption in vitro.68

Indirect effects of bacteria. Once the major
protective elements in the periodontium have
been overwhelmed by bacterial virulence mecha-
nisms, a number of host-mediated destructive
processes are initiated. Polymorphonuclear
leukocytes (PMNs), which normally provide pro-
tection, can themselves contribute to tissue
pathology. During the process of phagocytosis,
these cells typically “spill” some of their enzyme
content extracellularly during a process known
as degranulation; some of these enzymes are
capable of degrading the surrounding host tis-
sues, namely collagen and basement membrane
constituents, contributing to tissue damage.

There is increasing evidence that the bulk of
tissue destruction in established periodontitis
lesions is a result of the mobilization of the host
tissues via activation of monocytes, lympho-
cytes, fibroblasts, and other host cells.
Engagement of these cellular elements by bacte-
rial factors, in particular bacterial lipopolysac-
charide (LPS), is thought to stimulate production
of both catabolic cytokines and inflammatory
mediators including arachidonic acid metabolites
such as prostaglandin E2 (PGE2). Such
cytokines and inflammatory mediators in turn
promote the release of tissue-derived enzymes,
the matrix metalloproteinases, which are destruc-
tive to the extracellular matrix and bone.69,70

Once defensive mechanisms have been
averted, the subgingival bacterial microflora has
established itself as a predominantly anaerobic,
Gram-negative infection. The pathologic appear-
ance of the periodontitis lesion and the media-
tors, mediator precursors, and mRNA protein
templates recognizable either in the GCF or
within cellular elements of the gingival tissues are
consistent with the expected outcome of a local
infection with Gram-negative bacteria. Cytokines,
molecules which are released by host cells into
the local environment, provide molecular signals
to other cells thereby affecting their function.
Many cytokines are produced by cells in peri-
odontitis lesions. Among the cytokines and
inflammatory mediators most consistently found
to be associated with periodontitis are the follow-
ing:

1. Interleukin 1 (IL-1)71 is a pro-inflammatory,
multifunctional cytokine, which among its many
biological activities enables ingress of inflamma-
tory cells into sites of infection, promotes bone
resorption, stimulates eicosanoid (specifically,
PGE2) release by monocytes and fibroblasts,
stimulates release of matrix metalloproteinases
that degrade proteins of the extracellular matrix,
and participates in many aspects of the immune
response. IL-1 levels in general are elevated in
both tissues72,73 and GCF74-77 from diseased,
inflamed periodontal tissues compared to health-
ier sites, and elevated levels have been shown to
be associated with active disease in animal mod-
els.78 The predominant form in the periodontal
tissues is IL-1α, which is produced primarily by
macrophages.79,80

2. Interleukin 6 (IL-6)81 is a cytokine that stim-
ulates plasma cell proliferation and therefore
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antibody production and is produced by lympho-
cytes, monocytes, and fibroblasts.80 Levels of IL-
6 have been shown to be elevated in inflamed tis-
sues, higher in periodontitis than in gingivitis
tissues, and higher in GCF from refractory peri-
odontitis patients.82-84 IL-6 has also been shown
to stimulate osteoclast formation. Thus, this
cytokine may in large part account for both the
predominance of plasma cells in periodontitis
lesions as well as bone resorption.

3. Interleukin 8 (IL-8)85 is a chemoattractant
that is mainly produced by monocytes in
response to LPS, IL-1, or tumor necrosis factor
alpha (TNF-α). It is present at high levels in peri-
odontitis lesions, mainly associated with the
junctional epithelium and macrophages,86,87 and
its levels in GCF are higher in periodontitis
patients than in healthy controls.88 In addition to
serving as a chemoattractant for neutrophils, it
appears to selectively stimulate matrix metallo-
proteinase (MMP) activity from these cells, thus
in part accounting for collagen destruction within
periodontitis lesions.

4. Tumor necrosis factor alpha (TNF-α)89,90

shares many of its biological activities 
(pro-inflammatory properties, matrix metallopro-
teinase [MMP] stimulation, eiscosanoid produc-
tion, and bone resorption) with IL-1. In addition,
its secretion by monocytes and fibroblasts is
stimulated by bacterial LPS.

5. Prostaglandin E2 (PGE2),91,92 a vasoactive
eicosanoid produced by monocytes and fibro-
blasts, induces bone resorption and MMP secre-
tion. Many studies have shown the association of
elevated levels of PGE2 in tissues and GCF with
periodontal inflammation, progressive periodonti-
tis, and high-risk periodontitis patients (e.g.,
early-onset periodontitis, refractory periodontitis,
diabetes mellitus).93-100 The likely importance of
eicosanoids in periodontal disease pathogenesis
is underscored in several studies demonstrating
the beneficial effects of both systemic and topical
non-steroidal anti-inflammatory drugs on peri-
odontitis in both animal models and in
humans.91,101-105

In summary, a simplified model for pathogen-
esis of periodontitis within the local lesion is the
following: virulent microorganisms capable of ini-
tiating or propagating periodontal attachment
loss must be present in the local lesion at a criti-
cal minimal infective dose. In susceptible individ-
uals, or in susceptible periodontal sites within

susceptible individuals, protective mechanisms
are breached exposing the underlying tissues and
cells to bacterial components. Consequently, cel-
lular components, including monocytes and
fibroblasts, are stimulated by bacterial compo-
nents such as LPS to produce many or all of the
cytokines described above. These cytokines are
capable of acting alone, or in concert, to stimu-
late inflammatory responses and catabolic
processes such as bone resorption and collagen
destruction via the MMPs.

Genetic Factors Promoting Periodontitis 

As in any infectious disease, host susceptibility
plays a major role in determining whether or not
the presence of an infectious agent will ultimately
lead to expression of disease or progression of
preexisting disease. Genetic risk, one aspect of
such host susceptibility, has been and is being
examined. A summary of these data for specific
periodontal diseases, appears below.

Adult periodontitis. Studies of adult periodon-
titis and periodontal health in twins have demon-
strated that heredity accounts for a significant
proportion of the population variance in various
measures of periodontal diseases, such as gingi-
val inflammation, probing depth, and radi-
ographic bone levels.106-108 Recent data indicate
that a genetic variation or polymorphism in the
gene encoding IL-1 (see above) is associated
with severity of, and likely susceptibility to, peri-
odontitis.109 These polymorphisms are variations
in the DNA sequence of genes coding for IL-1α

(the IL-1A gene) and IL-1ß (the IL-1B gene). In a
population of adult, non-smoking subjects of
Caucasian Northern European heritage, a higher
percentage of individuals with severe periodontal
destruction tested positive for one of the genetic
forms (alleles) of the IL-1A gene plus one of the
Il-1B alleles more frequently than did subjects
with less severe disease. Furthermore, one of the
two alleles associated with risk for periodontitis is
also known to be associated with elevated pro-
duction of IL-1ß, thus providing a possible bio-
logical explanation for the enhanced susceptibil-
ity of patient with this genotype for periodontitis.

Early-onset periodontitis: localized juvenile
periodontitis (LJP), generalized juvenile peri-
odontitis (GJP), rapidly progressive periodonti-
tis (RPP). These diseases are characterized by
their age of onset (usually post-pubertal), by the
extent and severity of disease, by their often-
times characteristic bacterial microflora, and to a
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lesser extent by associated pathological and
immunological characteristics.110  These post-
pubertal forms of EOP have a familial distribu-
tion,111-114 and a number of clinical and biologi-
cal characteristics of EOP, including the
epidemiology and immunologic responses,
appear to be strongly influenced by race.115-117

These data imply that it is possible that risk for
EOP may be genetic. Although a number of
genetic models have been tested using genetic
segregation analysis, no consistent mode of
inheritance for all forms of EOP has been
observed.118-124 One study has demonstrated
genetic linkage of LJP with the Gc locus on chro-
mosome 4 in one extended family, but this find-
ing may not be generalizable to all families with
EOP.118,125

A number of hypotheses have been proposed

implicating candidates for genetic risk factors.

The observation that many patients with EOP,

particularly LJP, have neutrophil chemotactic

defects, point to factors related to neutrophil

function such as receptors for chemotactic

agents or molecules participating in signal trans-

duction.126-128 Associations of EOP with some

antigens of the major histocompatibility complex

(HLA) region have been demonstrated, indicat-

ing that heritable factors related to immunologic

responsiveness may be associated with risk for

EOP.129 Additionally, poorly functional heritable

forms of monocyte FcγRII, the receptor for

human IgG2 antibodies, have been shown to be

disproportionately present in patients with LJP.

Such receptors cause monocytes to function

poorly in phagocytosis of periodontal pathogens

such as A. actinomycetemcomitans, because

most of the antibody produced against this bac-

terium is of the IgG2 subclass.130 Finally, studies

have demonstrated hyperresponsiveness of

monocytes from EOP patients with respect to

their production of PGE2 in response to LPS. This

hyper-responsive phenotype could lead to

increased connective tissue or bone loss due to

inappropriately excessive production of these

catabolic factors.131,132

It is noteworthy that transmission of EOP in
families, and many of the biologic characteristics
of these diseases, may be explained by environ-
mental factors as well as genetic factors, and
some could be consequences of bacterial infec-
tion rather than the cause of such infections.

Pre-pubertal periodontitis. Prepubertal forms
of periodontitis are usually subcategorized into a
localized form (L-PP) and a generalized form (G-
PP). L-PP is most commonly found in patients
with no obvious health problems. Some, but not
all, patients with L-PP display relative defects in
neutrophil function and such patients can be fre-
quently members of families in which other indi-
viduals have EOP. Additionally, it has been pro-
posed that defects in cementum formation may
predispose to L-PP.133 In contrast, G-PP is fre-
quently associated with systemic disorders that
affect neutrophil function (chemotaxis, phagocy-
tosis) or numbers. Among the disorders that can
predispose to G-PP are leukocyte adhesion defi-
ciencies (LAD),134,135 a group of genetic disor-
ders resulting in impaired adherence-dependent
functions, as well as a number of other inherited
phagocyte disorders (Chediak-Higashi syn-
drome,136 cyclic neutropenia,137 and Papillon-
Lefevre syndrome138-140), collagen defects
(Ehler-Danlos syndrome type VIII141), and
enzyme defects (acatalasia and hypophosphata-
sia129,142-144). G-PP can, however, occur in
patients with no such discernible defect; fre-
quently, these patients are found in families of
patients with other forms of early-onset peri-
odontitis and thus may share common etiologic
and pathogenic mechanisms with EOP.

Refractory periodontitis. This form of peri-
odontitis is characterized by its relative resis-
tance to repeated routine therapeutic attempts to
control the progression of periodontal attachment
loss. Studies have demonstrated that such
patients, as seen in patients with EOP, can
demonstrate hyperresponsive monocytic
responses to bacterial LPS and produce high lev-
els of PGE2.145,146 Some of these responses may
be genetically determined in these patients.

SMOKING AND PATHOGENESIS OF

PERIODONTAL DISEASE

It has been demonstrated that smoking is a risk
factor for periodontitis in adults. The number of
pack-years of exposure to tobacco smoke is
associated with increased risk for adult periodon-
titis and increased disease severity in smokers
compared to non-smokers.147,148 Additionally,
smoking has been shown to be associated with
increased disease severity for the generalized
forms of EOP (GJP, RPP).149 The pathologic
mechanisms proposed for the deleterious effects
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of smoking on the periodontium include alter-
ations of the periodontal tissue vasculature, direct
alterative effects on the bacterial microflora, and
inhibitory effects on immunoglobulin levels and
antibody responses to plaque bacteria.

PERIODONTITIS ASSOCIATED WITH

SYSTEMIC DISEASES

Many of the systemic conditions associated with
or predisposing to periodontal attachment loss
have as a common attribute defective neutrophil
function. Severe periodontitis has been observed
in primary neutrophil disorders including agran-
ulocytosis,150,151 cyclic neutropenia,152,153

Chediak-Higashi syndrome,136 and lazy leuko-
cyte syndrome.154 In addition, more frequent
and severe periodontitis can be observed in
many patients with diabetes mellitus,148,155,156

Down’s syndrome,157,158 Papillon-Lefevre syn-
drome,138-140 and inflammatory bowel dis-
ease,128,159 which exhibit secondary neutrophil
impairment. These disorders underscore the
importance of the neutrophil in protection of the
periodontium. It is assumed, though in nearly all
cases not proven, that the pathogenic mecha-
nisms leading to tissue destruction in patients
with these diseases are similar to those in other
forms of periodontitis as described above.

Unusual and severe forms of periodontitis can
be more frequent in patients with certain severe
combined and acquired immunodeficiency dis-
eases. Furthermore, some patients with HIV
infections develop necrotizing ulcerative peri-
odontitis (NUP), in which acute destruction of the
periodontium with bleeding, tissue necrosis, and
pain can be observed.18,20,160,161 It is important
to note that this condition also occurs in the
absence of HIV infection, and that its occurrence
may be no more common than in the general
population.162 The pathogenesis of NUP associ-
ated with HIV infection is not clear; the subgingi-
val bacterial flora in patients with HIV infections
are not substantially different from that in other
patients with periodontitis, with the exception
that Candida and enteric pathogens can some-
times be found in some patients. Although it has
been hypothesized that the dysregulation and
suppression of the systemic and local immune
response results in hyperresponsiveness of neu-
trophils in local lesions and exacerbation of the
usual acute inflammatory response,18,162 there
are no definitive data to indicate that the patho-
genesis of periodontal diseases in HIV-positive

patients is different from that in HIV-negative
patients.

A number of studies have demonstrated that
there is a higher prevalence of periodontitis
amongst patients with diabetes mellitus, and that
diabetic patients have more severe periodontitis
than do non-diabetic individuals.148,156,163,164

Importantly, the degree of diabetic control and
the duration of the disease are thought to be
important factors contributing to the expression
of periodontitis in diabetics. Additionally, the
degree of control of periodontitis may influence
metabolic control of diabetes mellitus.165,166

Although the precise pathogenesis of periodonti-
tis in such diabetic patients is not known, a num-
ber of pathologic features of this disease are con-
sistent with increased risk for periodontitis.
Factors such as impaired neutrophil function;
microvascular alterations that could lead to
impaired access of leukocytes and plasma pro-
teins to the periodontium; and altered collagen
metabolism reflective of increased collagenase
activity, decreased collagen synthesis, and
reduced bone matrix formation, all may con-
tribute to the increased susceptibility of diabetics
to periodontal breakdown.

SUMMARY

1. The initiation and propagation of most
forms of gingivitis are dependent upon the pres-
ence and persistence of bacterial plaque. The
histopathology of the gingivitis lesion and its
stages are consistent with the following patho-
genic mechanisms. Plaque bacteria contain or
produce substances capable of causing inflam-
mation. Such substances can have direct effects
on the vasculature and on leukocytes, inducing
vasodilatation, increased GCF flow, and emigra-
tion of neutrophils. Substances in bacterial
plaque may also interact with host systems
involved in inflammatory responses and thereby
exacerbate clinical and histological parameters of
inflammation. In more advanced stages of dis-
ease it is likely that bacterial antigens, via their
ability to gain ingress to the periodontal tissues,
activate host cells such as monocytes, lympho-
cytes, and fibroblasts, and thereby induce patho-
logical changes that are consistent with a chronic
inflammatory response.

2. Although a high proportion of sites that
experience periodontal attachment loss display
signs of gingival inflammation, there is little evi-
dence demonstrating that gingivitis lesions will
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always progress to become destructive periodon-
titis lesions. Furthermore, the pathologic
processes that are operant during the initiation of
attachment loss, whether alterations in the bacte-
rial flora, fluctuations in host defense mecha-
nisms, or other factors, are not well defined.

3. The pathology of periodontitis lesions are
characteristic of, and consistent with, a subver-
sion of host defenses against bacterial plaque
pathogens and subsequent activation of bacteri-
ally-induced host-mediated processes that
destroy periodontal tissues. Data indicate that
pathogenic plaque bacteria have virulence char-
acteristics that can prevent their efficient detec-
tion and elimination by the host, disable host
cells and humoral factors, and directly adversely
affect the tissues. The predominance of a Gram-
negative bacterial flora, in combination with the
cellular and cytokine profiles of the lesions, indi-
cate the likelihood that bacterial LPS activation of
monocytes and subsequent production of tissue-
destructive cytokines is likely a major pathway
for connective tissue attachment loss and bone
loss in most forms of periodontitis. Such
cytokines can cause tissue destruction via mobi-
lization of tissue metalloproteinases, a major
pathway for destruction of soft and hard connec-
tive tissues.

4. Emerging data indicate that individual sus-
ceptibility to some forms of periodontal disease
may be heritable. However, no definitive data in
this regard are available. On the other hand,
many inherited and acquired diseases character-
ized by diminished protective function of inflam-
matory and immunologic pathways are associ-
ated with more severe periodontal disease.
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